Effects of resonant tunneling and dynamics of coherent interaction on intrinsic linewidth of quantum cascade lasers

نویسندگان

  • Tao Liu
  • Kenneth E. Lee
  • Qi Jie Wang
چکیده

A theoretical model for calculation of the intrinsic linewidth of QCLs is built on the basis of the quantum Langevin approach. It differs from the traditional rate equation model in that the resonant tunneling and the dynamics of coherent interaction can be considered. Results show that the coupling strength and the dephasing rate associated with resonant tunneling strongly affect the linewidth of THz QCLs in the incoherent resonant-tunneling transport regime but only induce little influence in the coherent regime. The dynamics of coherent interaction and resonanttunneling transport show insignificant effects on the linewidth calculation of mid-infrared QCLs due to strong coupling in resonant tunneling. We also demonstrate that by properly designing the active regions of QCLs, one can reduce the intrinsic linewidth according to our model. ©2012 Optical Society of America OCIS codes: (140.5965) Semiconductor lasers, quantum cascade; (140.3070) Infrared and farinfrared lasers; (300.3700) Linewidth; (270.2500) Fluctuations, relaxations, and noise. References and links 1. J. Faist, F. Capasso, D. L. Sivco, C. Sirtori, A. L. Hutchinson, and A. Y. Cho, “Quantum cascade laser,” Science 264(5158), 553–556 (1994). 2. T. Liu and Q. J. Wang, “Fundamental frequency noise and linewidth broadening caused by intrinsic temperature fluctuations in quantum cascade lasers,” Phys. Rev. B 84(12), 125322 (2011). 3. R. F. Curl, F. Capsso, C. Gmachl, A. A. Kosterev, B. McManus, R. Lewicki, M. Pusharsky, G. Wysocki, and F. K. Tittel, “Quantum cascade lasers in chemical physics,” Chem. Phys. Lett. 487(1-3), 1–18 (2010). 4. M. S. Vitiello, L. Consolino, S. Bartalini, A. Tredicucci, M. Inguscio, and P. De Natale, “The intrinsic linewidth of THz quantum cascade lasers,” CLEO: Science and Innovations, (Optical Society of America, 2012), paper CTu2B.2. 5. C. Jirauschek, “Monte Carlo study of intrinsic linewidths in terahertz quantum cascade lasers,” Opt. Express 18(25), 25922–25927 (2010). 6. S. Bartalini, S. Borri, I. Galli, G. Giusfredi, D. Mazzotti, T. Edamura, N. Akikusa, M. Yamanishi, and P. De Natale, “Measuring frequency noise and intrinsic linewidth of a room-temperature DFB quantum cascade laser,” Opt. Express 19(19), 17996–18003 (2011). 7. L. Tombez, S. Schilt, J. Di Francesco, P. Thomann, and D. Hofstetter, “Temperature dependence of the frequency noise in a mid-IR DFB quantum cascade laser from cryogenic to room temperature,” Opt. Express 20(7), 6851–6859 (2012). 8. S. Bartalini, S. Borri, P. Cancio, A. Castrillo, I. Galli, G. Giusfredi, D. Mazzotti, L. Gianfrani, and P. De Natale, “Observing the intrinsic linewidth of a quantum-cascade laser: beyond the Schawlow-Townes limit,” Phys. Rev. Lett. 104(8), 083904 (2010). 9. M. Yamanishi, T. Edamura, K. Fujita, N. Akikusa, and H. Kan, “Theory of the intrinsic linewidth of quantumcascade lasers: hidden reason for the narrow linewidth and line-broadening by thermal photons,” IEEE J. Quantum Electron. 44(1), 12–29 (2008). 10. S. Kumar and Q. Hu, “Coherence of resonant-tunneling transport in terahertz quantum-cascade lasers,” Phys. Rev. B 80(24), 245316 (2009). 11. C. Sirtori, F. Capasso, J. Faist, A. L. Hutchinson, D. L. Sivco, and A. Y. Cho, “Resonant tunneling in quantum cascade lasers,” IEEE J. Quantum Electron. 34(9), 1722–1729 (1998). #168983 $15.00 USD Received 23 May 2012; revised 30 Jun 2012; accepted 9 Jul 2012; published 12 Jul 2012 (C) 2012 OSA 16 July 2012 / Vol. 20, No. 15 / OPTICS EXPRESS 17145 12. H. Callebaut and Q. Hu, “Importance of coherence for electron transport in terahertz quantum cascade lasers,” J. Appl. Phys. 98(10), 104505 (2005). 13. L. Davidovich, “Sub-Poissonian processes in quantum optics,” Rev. Mod. Phys. 68(1), 127–173 (1996). 14. G. P. Agrawal and C. M. Bowden, “Concept of linewidth enhancement factor in semiconductor lasers: its usefulness and limitations,” IEEE Photon. Technol. Lett. 5(6), 640–642 (1993). 15. M. O. Scully and M. S. Zubairy, Quantum optics (Cambridge University Press, 1997). 16. W. H. Louisell, Quantum statistical properties of radiation (Wiley, 1973). 17. K. Petermann, Laser diode modulation and noise (Kluwar Academic, 1988). 18. C. Henry, “Theory of the linewidth of semiconductor lasers,” IEEE J. Quantum Electron. 18(2), 259–264 (1982). 19. T. Aellen, R. Maulini, R. Terazzi, N. Hoyler, M. Giovannini, J. Faist, S. Blaser, and L. Hvozdara, “Direct measurement of the linewidth enhancement factor by optical heterodyning of an amplitude-modulated quantum cascade laser,” Appl. Phys. Lett. 89(9), 091121 (2006). 20. B. Daino, P. Spano, M. Tamburrini, and S. Piazzolla, “Phase noise and spectral line shape in semiconductor lasers,” IEEE J. Quantum Electron. 19(3), 266–270 (1983). 21. C. H. Henry and R. F. Kazarinov, “Quantum noise in photonics,” Rev. Mod. Phys. 68(3), 801–853 (1996). 22. A. M. Andrews, A. Benz, C. Deutsch, G. Fasching, K. Unterrainer, P. Klang, W. Schrenk, and G. Strasser, “Doping dependence of LO-phonon depletion scheme THz quantum-cascade lasers,” Mater. Sci. Eng. B 147(23), 152–155 (2008). 23. S. Kumar, Q. Hu, and J. L. Reno, “186 K operation of terahertz quantum-cascade lasers based on a diagonal design,” Appl. Phys. Lett. 94(13), 131105 (2009). 24. D. Hofstetter, M. Beck, T. Aellen, and J. Faist, “High-temperature operation of distributed feedback quantumcascade lasers at 5.3 μm,” Appl. Phys. Lett. 78(4), 396 (2001).

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Coherence of resonant-tunneling transport in terahertz quantum-cascade lasers

We develop simple density-matrix models to describe the role of coherence in resonant-tunneling RT transport of quantum-cascade lasers QCLs . Specifically, we investigate the effects of coherent coupling between the lasing levels with other levels on the transport properties and gain spectra. In the first part of the paper, we use a three-level density-matrix model to obtain useful analytical e...

متن کامل

Importance of the microscopic effects on the linewidth enhancement factor of quantum cascade lasers.

Microscopic density matrix analysis on the linewidth enhancement factor (LEF) of both mid-infrared (mid-IR) and Terahertz (THz) quantum cascade lasers (QCLs) is reported, taking into account of the many body Coulomb interactions, coherence of resonant-tunneling transport and non-parabolicity. A non-zero LEF at the gain peak is obtained due to these combined microscopic effects. The results show...

متن کامل

Temperature Effect on THz Quantum Cascade Lasers

A simple semi-phenomenological model, which accurately predicts the dependence of thresholdcurrent for temperature of Resonant-phonon three well quantum cascade laser based on verticaltransitions is offered. We found that, the longitude optical phonon scattering of thermally excitedelectrons is the most important limiting factor for thermal performance of high frequency THz QCLs.In low frequenc...

متن کامل

Modulation Response and Relative Intensity Noise Spectra in Quantum Cascade Lasers

Static properties, relatively intensity noise and intensity modulation response in quantum cascade lasers (QCLs) studied theoretically in this paper. The present rate equations model consists of three equations for the electrons density in the conduction band and one equation for photons density in cavity length. Two equations were derived to calculate the noise and modulation response. Calcula...

متن کامل

Design Optimization for 4.1-THZ Quantum Cascade Lasers

We present an optimized design for GaAs/AlGaAs quantum cascade lasers operating at ‎‎4.1THz. This was based on a three-well active module with diagonal radiative transition. This ‎was performed by modifying the existing model structure, to reduce the parasitic anticrossings ‎‎(leakage currents) as well as the optical gain linewidth. While the gain FWHM was reduced by ‎more than 50% the gain pea...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012